Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix

نویسندگان

  • Jacobus D. Vlok
  • Jan C. Olivier
چکیده

Eigenvalue distributions of Wishart matrices are given in the literature as functions or distributions defined in terms of matrix arguments requiring numerical evaluation. As a result the relationship between parameter values and statistics is not available analytically and the complexity of the numerical evaluation involved may limit the implementation, evaluation and use of eigenvalue techniques using Wishart matrices. This paper presents analytic expressions that approximate the distribution of the largest eigenvalue of white Wishart matrices and the corresponding sample covariance matrices. It is shown that the desired expression follows from an approximation to the TracyWidom distribution in terms of the Gamma distribution. The approximation offers largely simplified computation and provides statistics such as the mean value and region of support of the largest eigenvalue distribution. Numeric results from the literature are compared with the approximation and Monte Carlo simulation results are presented to illustrate the accuracy of the proposed analytic approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices

The distributions of the largest and the smallest eigenvalues of a p-variate sample covariance matrix S are of great importance in statistics. Focusing on the null case where nS follows the standard Wishart distribution Wp(I, n), we study the accuracy of their scaling limits under the setting: n/p → γ ∈ (0,∞) as n → ∞. The limits here are the orthogonal Tracy-Widom law and its reflection about ...

متن کامل

Accuracy of the Tracy-Widom limit for the largest eigenvalue in white Wishart matrices

Let A be a p-variate real Wishart matrix on n degrees of freedom with identity covariance. The distribution of the largest eigenvalue in A has important applications in multivariate statistics. Consider the asymptotics when p grows in proportion to n, it is known from Johnstone (2001) that after centering and scaling, these distributions approach the orthogonal Tracy-Widom law for real-valued d...

متن کامل

Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations

Let λ1, · · · , λn be random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n, p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ...

متن کامل

On the Distribution of the Largest Eigenvalue in Principal Components

Stanford University Let x 1 denote the square of the largest singular value of an n × p matrix X, all of whose entries are independent standard Gaussian variates. Equivalently, x 1 is the largest principal component variance of the covariance matrix X′X, or the largest eigenvalue of a p-variate Wishart distribution on n degrees of freedom with identity covariance. Consider the limit of large p ...

متن کامل

An asymptotic Berry-Esseen result for the largest eigenvalue of complex white Wishart matrices

A number of results concerning the convergence in distribution of the largest eigenvalue of a large class of random covariance matrices have recently been obtained. In particular, it was shown in Johansson (2000), Johnstone (2001), and El Karoui (2003) that if X is an n×N matrix whose entries are i.i.d standard complex Gaussian and l1 is the largest eigenvalue of X∗X , there exist sequences mn,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Communications

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012